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Continuity of Effect Algebra Operations
in the Interval Topology

Qu Wenbo,1,2,5 Wu Junde,3 and Yang Chengwu4

We study the continuity of ⊕ and � of effect algebras in the interval topology, and
present several examples of effect algebras with interesting properties.
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1. EFFECT ALGEBRA AND ITS ELEMENTARY PROPERTIES

In 1994, in order to model unsharp quantum logics, Foulis and Bennett intro-
duced the following famous algebra system and called it the effect algebras (Foulis
and Bennett, 1994):

Let L be a set with two special elements 0, 1, ⊥ be a subset of L × L . We
denote a ⊥ b if (a, b) ∈ ⊥. Also, let ⊕ : ⊥ → L be a binary operation. If the
following axioms hold:

(i) (Commutative Law). If a, b ∈ L and a ⊥ b, then b ⊥ a and a ⊕ b =
b ⊕ a.

(ii) (Associative Law). If a, b, c ∈ L , a ⊥ b and (a ⊕ b) ⊥ c, then b ⊥ c, a ⊥
(b ⊕ c) and (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

(iii) (Orthocomplementation Law). For each a ∈ L there exists a unique b ∈
L such that a ⊥ b and a ⊕ b = 1.

(iv) (Zero-Unit Law). If a ∈ L and 1 ⊥ a, then a = 0.

Then (L , ⊥ , ⊕, 0, 1) is said to be an effect algebra.
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Let (L , ⊥ , ⊕, 0, 1) be an effect algebra. If a, b ∈ L and a ⊥ b we say that
a and b be orthogonal. If a ⊕ b = 1 we say that b is the orthocomplement of a,
and write b = a

′
. It is clear that 1

′ = 0, (a
′
)
′ = a, a ⊥ 0 and a ⊕ 0 = a for all

a ∈ L .
We also say that a ≤ b if there exists c ∈ L such that a ⊥ c and a ⊕ c = b.

We may prove that ≤ is a partial order on L and satisfies that 0 ≤ a ≤ 1, a ≤ b ⇔
b

′ ≤ a
′

and a ≤ b
′ ⇔ a ⊥ b for a, b ∈ L . If a ≤ b, the element c ∈ L such that

c ⊥ a and a ⊕ c = b is unique, and satisfies the condition c = (a ⊕ b
′
)
′
. It will be

denoted by c = b � a. If a ≤ b but a �= b, we write a < b.
The above showed that each effect algebra (L , ⊥ , ⊕, 0, 1) has two binary

operations ⊕ and �.
If the partial order ≤ of an effect algebra (L , ⊥ , ⊕, 0, 1) defined as above is a

lattice, then the effect algebra (L , ⊥ , ⊕, 0, 1) is said to be a lattice effect algebra; if
for all a, b ∈ L , a ≤ b or b ≤ a, then (L , ⊥ , ⊕, 0, 1) is said to be a totally ordered
effect algebra; if for each non-empty subset A of (L , ⊥ , ⊕, 0, 1), the supremum
∨{a ∈ A} and the infimum ∧{a ∈ A} of A exist, then (L , ⊥ , ⊕, 0, 1) is said to be
complete; if for all a, b ∈ L , a < b, there exists c ∈ L such that a < c < b, then
(L , ⊥ , ⊕, 0, 1) is said to be connected.

Let F = {ai : 1 ≤ i ≤ n}be a finite subset of L . If a1 ⊥ a2, (a1 ⊕ a2) ⊥ a3, . . .

and (a1 ⊕ a2 . . . ⊕ an−1) ⊥ an , we say that F is orthogonal and we define ⊕F =
a1 ⊕ a2 . . . ⊕ an = (a1 ⊕ . . . ⊕ an−1) ⊕ an (by the commutative and associative
laws, this sum does not depend on any permutation of elements). Now, if A is an
arbitrary subset of L and F(A) is the family of all finite subsets of A, we say that
A is orthogonal if F is orthogonal for each F ∈ F(A). If A is orthogonal and the
supremum ∨{⊕F : F ∈ F(A)} exists, then ⊕A = ∨{⊕F : F ∈ F(A)} is called
the ⊕-sum of A.

An effect algebra is said to be ⊕-complete, if for each orthogonal subsets A
of L , the ⊕-sum ⊕A exists; if for each countable orthogonal subset B of L , the
⊕-sum ⊕B exists, then we say that the effect algebra is ⊕-σ -complete.

We may prove that each complete effect algebra must be ⊕-complete, but the
converse is not true.

2. ORDER TOPOLOGY OF EFFECT ALGEBRAS

A partial order (�, �) is said to be a directed set, if for all α, β ∈ �, there
exists γ ∈ � such that α � γ , β � γ .

If (�, �) is a directed set and for each α ∈ �, aα ∈ (L , ⊥ , ⊕, 0, 1), then
{aα}α∈� is said to be a net of (L , ⊥ , ⊕, 0, 1).

Let {aα}α∈� be a net of (L , ⊥ , ⊕, 0, 1). Then we write aα ↑, when α � β,
aα ≤ aβ . Moreover, if a is the supremum of {aα : α ∈ �}, i.e., a = ∨{aα : α ∈ �},
then we write aα ↑ a.

Similarly, we may write aα ↓ and aα ↓ a.
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If {uα}α∈�, {vα}α∈� are two nets of (L , ⊥ , ⊕, 0, 1), for u ↑ uα ≤ vα ↓ v
means that uα ≤ vα for all α ∈ � and uα ↑ u and vα ↓ v . We write b ≤ uα ↑ u if
b ≤ uα for all α ∈ � and uα ↑ u.

We say a net {aα}α∈� of (L , ⊥ , ⊕, 0, 1) is order convergent to a point a of
L if there exists two nets {uα}α∈� and {vα}α∈� of (L , ⊥ , ⊕, 0, 1) such that

a ↑ uα ≤ aα ≤ vα ↓ a.

Let F = {F : F = ∅ or F ⊆ L and satisfies that for each net {aα}α∈� of F if
{aα}α∈� is order convergent to a, then a ∈ F}.

It is easy to prove that ∅, L ∈ F and if F1, F2, . . . , Fn ∈ F , then ∪n
i=1 Fi ∈ F ,

if {Fµ}µ∈	 ⊆ F , then ∩µ∈	Fµ ∈ F . Thus, the family F of subsets of L define a
topology τ L

0 on (L , ⊥ , ⊕, 0, 1) such thatF consists of all closed sets of this topol-
ogy. The topology τ L

0 is called the order topology of (L , ⊥ , ⊕, 0, 1) (Birkhoff,
1948).

We can prove that the order topology τ L
0 of (L , ⊥ , ⊕, 0, 1) is the finest

(strongest) topology on L such that for each net {aα}α∈� of (L , ⊥ , ⊕, 0, 1), if
{aα}α∈� is order convergent to a, then {aα}α∈� must be topology τ L

0 convergent to
a. But the converse is not true.

For the order convergent properties of nets in effect algebras, Riecanova
proved the following conclusions (Riecanova, 2000):

Lemma 2.1. Let (L , ⊥ , ⊕, 0, 1) be a lattice effect algebra. For elements of L
we have:

(1) b
′ ≥ aα ↓ a implies that aα ⊕ b ↓ a ⊕ b.

(2) b ≤ aα ↑ a implies that aα � b ↑ a � b.
(3) b

′ ≥ aα order convergent to a implies that aα ⊕ b order convergent to
a ⊕ b.

(4) b ≤ aα order convergent to a implies that aα � b order convergent to
a � b.

(5) b
′ ≥ aα order convergent to a iff aα ⊕ b order convergent to a ⊕ b.

(6) b ≤ aα order convergent to a iff aα � b order convergent to a ⊕ b.
(7) b ≥ aα order convergent to a iff b � aα order convergent to b � a.

Furthermore, after proving two Lemmas, Riecanova proved the continuity of
⊕ and � with respect to the order topology, that is:

Theorem 2.1. If (L , ⊥ , ⊕, 0, 1) is a lattice effect algebra, then a net {aα}α∈� of
(L , ⊥ , ⊕, 0, 1) has:

(1) If b′ ≥ aα for all α ∈ �, and {aα}α∈� convergent to a with respect to the
order topology τ L

0 , then {aα ⊕ b} convergent to a ⊕ b with respect to the
order topology τ L

0 .
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(2) If b ≤ aα for all α ∈ �, and {aα} convergent to a with respect to the order
topology τ L

0 , then {aα � b} convergent to a � b with respect to the order
topology τ L

0 .
(3) If b ≥ aα for all α ∈ �, and {aα} convergent to a with respect to the order

topology τ L
0 , then {b � aα} convergent to b � a with respect to the order

topology τ L
0 .

3. INTERVAL TOPOLOGY OF EFFECT ALGEBRAS

A family of closed sets F in a topological space (X, T ) with the property that
each closed subset of (X, T ) is an intersection of members of F , is called a basis
of closed sets.

A sub-basis of closed sets is a family S of closed sets, such that each set of
some basis is the union of finite sets of S, hence each closed set is an intersection
of finite unions of sets of S.

Definition 3.1. By the interval topology of an effect algebra (L , ⊥ , ⊕, 0, 1), we
mean that defined by taking the all closed intervals [a, b] as a sub-basis of closed
sets of (L , ⊥ , ⊕, 0, 1).

It is easy to prove that each closed interval [a, b] of effect algebra (L , ⊥ , ⊕,
0, 1) is a closed set with respect to the order topology of effect algebra, so
the interval topology is weaker than the order topology. But, if (L , ⊥ , ⊕, 0, 1)
is a totally order effect algebra, then its order topology and interval topology
are same.

Now, we present an example of effect algebra to show that its interval topology
may be really weaker than its order topology.

Example 3.1. Let L = {0, 1, 1
2 , . . . , 1

n , . . .}. For each 1
n , let 0 ⊕ 1

n = 1
n , 1

n ⊕ 1
n =

1, 0 ⊕ 1 = 1. If m �= n, 1
m ⊕ 1

n can not be defined. Then (L , 0, 1, ⊕) is a complete
effect algebra, and the interval topology is really weaker than the order topology.

Now, we need the following lemma which is a famous fact in the topology
theory:

Lemma 3.1. If (X, T1) and (Y, T2) are two topological spaces and f : (X, T1) →
(Y, T2). Then f is a continuous map iff for each closed subset A of (Y, T2), the
inverse image f −1(A) of A is a closed subset of (X, T1).

Now, we study the continuity of ⊕ and � of effect algebras with respect to
the interval topology, our main result is:
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Theorem 3.1. If (L , ⊥ , ⊕, 0, 1) is a lattice effect algebra, then a net {aα}α∈� of
(L , ⊥ , ⊕, 0, 1) has:

(1) If b
′ ≥ aα for all α ∈ � and {aα}α∈� convergent to a with respect to the

interval topology, then {aα ⊕ b} convergent to a ⊕ b with respect to the
interval topology.

(2) If b ≤ aα for all α ∈ � and {aα} convergent to a with respect to the
interval topology, then {aα � b} convergent to a � b with respect to the
interval topology.

(3) If b ≥ aα for all α ∈ � and {aα} convergent to a with respect to the
interval topology, then {b � aα} convergent to b � a with respect to the
interval topology.

Proof: We only prove conclusion (1), the conclusions (2) and (3) can be proved
by the similar methods.

It follows from the definition of interval topology and Lemma 3.1 that we
only need to prove for each closed interval [c, d] of (L , ⊥ , ⊕, 0, 1), the inverse
image I = {x : x ≤ b

′
andx ⊕ b ∈ [c, d] is a closed set of (L , ⊥ , ⊕, 0, 1) with

respect to the interval topology.

(i) If [c, d] only has an element or [c, d] is a empty set, then it is clear that
I only has an element or I is an empty set.

(ii) If b ≤ c ≤ d , then I = [c � b, d � b] ∩ [0, b
′
].

(iii) If c < d and d ≤ b, then I is an empty set.
(iv) If c ≤ b ≤ d , then I = [0, d � b] ∩ [0, b

′
].

(v) If b cannot be compared with c, b cannot also be compared with d, then
I is an empty set.

(vi) If b cannot be compared with c, but b ≤ d. Let e = c ∨ b. Then I =
[e � b, d � b] ∩ [0, b

′
].

(vii) If b cannot be compared with d , but c ≤ b. Let f = b ∧ d. Then I =
[0, f � b] ∩ [0, b

′
].

It follows from (i)–(vii) that conclusion (1) is true and the theorem is
proved. �

It is well known that if the effect algebra is complete, then its interval topology
is a compact topological space (Birkhoff, 1948). So the Example 1 is a compact
topological space if its topology is the interval topology.

Example 3.2. Let E = [0, 1], x , y ∈ E and x ⊕ y be defined iff x + y ≤ 1. Then
(E , 0, 1, ⊕) is a compact totally ordered connected effect algebra.

In 1995, Mesiar showed that an effect algebra is a totally ordered compact and
connected iff it is isomorphic with the effect algebra (E , 0, 1, ⊕) of Example 3.2
(Mesiar, 1995).



2316 Wenbo, Junde, and Chengwu

Now, we present a connected effect algebra, but it is not complete and totally
ordered.

Example 3.3. Let L = [0, 1] × [0, 1], (x1, x2), (y1, y2) ∈ L and (x1, x2) ⊕ (y1,
y2) be defined iff x1 + y1 ≤ 1, x2 + y2 ≤ 1. Then (L , 0, 1, ⊕) is connected, but it
is not complete and it is not also totally ordered. In addition, the open interval ([0,
0], [1, 0]) is not an open set with respect to its interval topology.

Furthermore, we present an example which is a totally ordered connected
effect algebra, but it is not ⊕-σ -complete and it is not also compact with respect
to the interval topology.

Example 3.4. Let L be the all rational numbers of [0, 1], x , y ∈ L , and x ⊕ y
be defined iff x + y ≤ 1. Then (L , 0, 1, ⊕) is a totally ordered connected effect
algebra, but it is not ⊕-σ -complete and it is not also compact effect algebra with
respect to the interval topology.

Note that { 1
n } in Example 1 is convergent to 1 with respect to the interval

topology, but 1
n ⊕ 1

n = 1 is not convergent to 1 ⊕ 1, so the ⊕ operation is not
continuous for two variables.

Finally, we prove the following interesting conclusion:

Theorem 3.2. Let (L , ⊥ , ⊕, 0, 1) be a lattice effect algebra. If A = {ak}k∈N is
orthogonal ⊕-summable, then {an}n∈N is order convergent to 0, and so {an}n∈N is
also order topology and interval topology convergent to 0.

Note that if {an}n∈N is order convergent to 0, then {an}n∈N must be order
topology convergent to 0, and interval topology is weaker than the order topology,
so we only need to prove {an}n∈N is order convergent to 0.

In fact, let a = ⊕A = ∨{⊕n
k=1ak : n ∈ N} and sn = ∨{⊕n

k=1ak}. Then it fol-
lows from Lemma 2.1 that 0 ≤ an ≤ a � sk+1 and a � sk+1 ↓ 0. So {ak} is order
convergent to 0.
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